Setting Up Stochastic Integration

in prog

divider

Variations

Def: Define the total variation, TV,TV, and quadratic variation, QV,QV, of a function f(t)f(t) on t[a,b]t\in [a,b] as:

TV(f;[a,b])=supkϕsupti=0kf(ti+1)f(ti)TV(f; [a,b]) = \sup_{k \geq \phi} \sup_{t} \sum_{i=0}^k |f(t_{i+1}) - f(t_i)|

and

QV(f;[a,b])=supkϕsupti=0k(f(ti+1)f(ti))2,QV(f; [a,b]) = \sup_{k\geq \phi} \sup_t \sum_{i=0}^k (f(t_{i+1}) - f(t_i))^2,

where the second sup\sup ranging over tt is for a=t0<t1<...<tn=b.a = t_0 < t_1 < ... < t_n = b.

For BtB_t Brownian motion,

TV({Bt}[a,b];[a,b])= a.s. for any a<bTV(\{B_t\}_{[a,b]} ; [a,b]) = \infty \text{ a.s. for any } a<b

and

QV({Bt}[a,b];[a,b])=ba in probability and L2.QV(\{B_t\}_{[a,b]} ; [a,b]) = b-a \text{ in probability and } \mathcal{L}^2.

(pf here).

Corollary: Along any sequence of partitions {πn}\{\pi_n\} \in \prod s.t. πn<,\sum | \pi_n | < \infty, we have QV({B};[a,b])=baQV(\{B\}; [a,b]) = b-a a.s.

Why is the infinite total variation TV(B)=TV(B) = \infty a problem?

Suppose we’d like to compute

0tf(s)dBs,\int_0^t f(s) dB_s,

the so-called Wiener integral. Bs(w)B_s(w) is almost surely continuous, but we can’t treat this as a Riemann-Stieltjes integral.

Consider a nonrandom function ff continuous and gg to be characterized as follows:

0tf(s)dg(s)=limntinf(si)(g(ti+1)g(ti))\int_0^t f(s) dg(s) = \lim_{\prod_n} \sum_{t_i \in \prod_n} f(s_i) (g(t_{i+1}) - g(t_i))

for each si[ti,ti+1]s_i \in [t_i, t_{i+1}] and taking the limit of finer meshes n0|\prod_n| \rightarrow 0. The limit should exist independently of our choice of partition and choice of sis_i’s.

When does the limit exist?

Let m\prod_m be a coarser partition than n\prod_n. Then

tinf(si)(g(ti+1)g(ti))t~jmf(s~j)(g(t~j+1)g(t~j))=tin(f(si)f(s~i))(g(ti+1)g(ti)),\begin{align} \sum_{t_i \in \prod_n} f(s_i) (g(t_{i+1}) - g(t_i)) - \sum_{\tilde t_j \in \prod_m} f(\tilde s_j)(g(\tilde t_{j+1}) - g(\tilde t_j)) \\ = \sum_{t_i \in \prod_n} (f(s_i) - f(\tilde s_i^*))(g(t_{i+1}) - g(t_i)), \end{align}

with s~i\tilde s^*_i is chosen the obvious way.

    (2)f(si)f(s~i)g(ti+1)g(ti)TV(g)maxif(si)f(s~i).\begin{align*} \implies (2) &\leq \sum |f(s_i) - f(\tilde s^*_i) | |g(t_{i+1}) - g(t_i) | \\ &\leq TV(g) * \max_i |f(s_i) - f(\tilde s^*_i)|. \end{align*}

If ff is continuous and TV(g)<,TV(g) < \infty, then the sequence of sums is Cauchy.

Then the limit would exist and does not depend on choice of partition.

Contrapositive: if the Riemann Stieltjes integral exists for all continuous ff, then TV(g)<.TV(g) < \infty.

Pf:…

Lemma: Assume TV(g;[a,b])<,fnf0,TV(g; [a,b]) < \infty, ||f_n - f||_\infty \rightarrow 0, and fnf_n are simple. Then limn0tfndg\lim_{n} \int_0^t f_n dg exists independently of choice of the approximating sequence.

Pf:

Denote limn0tfndg\lim_{n} \int_0^t f_n dg as I(fn)I(f_n).

I(fn)I(fm)=i(fn(ti)fm(ti))(g(ti+1)g(ti))I(f_n) - I(f_m) = \sum_i (f_n(t_i) - f_m(t_i))(g(t_{i+1}) - g(t_i))

for some common refinement of tt’s. Hence I(fn)I(fm)fnfmTV(g).|I(f_n) - I(f_m)| \leq ||f_n - f_m|| TV(g). Since

fnfmfnf+ffm0,||f_n - f_m|| \leq ||f_n - f|| + ||f - f_m|| \rightarrow 0,

we have I(fn)I(f_n) Cauchy sequence and the limit exists.

Let (hn)(h_n) be another sequence of simple functions such that hnf0||h_n -f|| \rightarrow 0. Note

hnfmhnf+ffm0||h_n - f_m|| \leq ||h_n - f|| + ||f - f_m|| \rightarrow 0

as both n,mn,m approach .\infty. For a common refinement,

I(hn)I(fm)=i(hn(ti)fm(ti))(g(ti+1)g(ti)),I(h_n) - I(f_m) = \sum_i (h_n(t_i) - f_m(t_i))(g(t_{i+1}) - g(t_i)),

which is again Cauchy. Therefore, the integrals must approach the same limit, regardless of approximating sequence. \blacksquare

What if TV(g;[0,1])=TV(g; [0,1]) = \infty? Then there exists simple functions fnf0||f_n - f||_\infty \rightarrow 0 such that I(fn).I(f_n) \uparrow \infty.

Pf:

WLOG assume f=0f=0.

Let TV(g)=TV(g) = \infty. Then there exists a sequence of partitions (n)(\prod_n) such that

ting(ti+1)g(ti).\sum_{t_i \in \prod_n} |g(t_{i+1}) - g(t_i)| \rightarrow \infty.

Define hn(ti)=sgn(g(ti+1g(ti))).h_n(t_i) = \text{sgn}(g(t_{i+1} - g(t_i))). Then I(hn)I(h_n) \uparrow \infty but hnh_n does not converge to 00 uniformly.

Let fn=hnI(hn).f_n = \frac{h_n}{\sqrt{I(h_n)}}. Then I(fn)=I(hn)I(f_n) = \sqrt{I(h_n)} \uparrow \infty and suptfn(t)0=1I(hn)0\sup_t |f_n(t) - 0 | = \frac{1}{\sqrt{I(h_n)}} \rightarrow 0.

When TV(g)=TV(g) = \infty the Riemann-Stieltjes limit depends on choice of approximating sequence. \blacksquare

Integrating w.r.t. Brownian Motion

Let’s try to make sense of the integral

01f(t,w)dBt(w)\int_0^1 f(t,w) dB_t(w)

where (Bt)(B_t) is Brownian motion and ff is simple:

fn(t,w)=jcj(w)1[j/2n,(j+1)/2n](t).f_n(t,w) = \sum_j c_j(w) \mathbb{1}_{[j/2^n, (j+1)/2^n]}^{(t)}.

Note this means fnf_n is random piecewise constant. Then we have

01fn(t,w)dBt(w)=cj(w)(B((j+1)/2n)(w)Bj/2n(w)).\int_0^1 f_n(t,w) dB_t(w) = \sum c_j(w) (B_{((j+1)/2^n)}(w) - B_{j / 2^n}(w)).

Ultimately, if we’d want to integrate Brownian motion, we’d consider 2 cases:

We can think of these as choices to evaluate ff within the interval (e.g., choosing sides of the rectangle for left/right/midpoint Riemann integral).

Note that

E[01fn(t,w)dBt(w)]\E[\int_0^1 f_n(t,w) dB_t(w)]

is either 00 (scenario a) or 11 (scenario b). Both seem like good approximations to f(t,w)=Bt(w),f(t,w) = B_t(w), but have different integrals!

Generally:

f(ti,w)1[t0,ti+1]\sum f(t_i^*, w) \mathbb{1}_{[t_0, t_{i+1}]}