Setting Up Stochastic Integration
in prog
Variations
Def : Define the total variation , T V , TV, T V , and quadratic variation , Q V , QV, Q V , of a function f ( t ) f(t) f ( t ) on t ∈ [ a , b ] t\in [a,b] t ∈ [ a , b ] as:
T V ( f ; [ a , b ] ) = sup k ≥ ϕ sup t ∑ i = 0 k ∣ f ( t i + 1 ) − f ( t i ) ∣ TV(f; [a,b]) = \sup_{k \geq \phi} \sup_{t} \sum_{i=0}^k |f(t_{i+1}) - f(t_i)|
T V ( f ; [ a , b ]) = k ≥ ϕ sup t sup i = 0 ∑ k ∣ f ( t i + 1 ) − f ( t i ) ∣
and
Q V ( f ; [ a , b ] ) = sup k ≥ ϕ sup t ∑ i = 0 k ( f ( t i + 1 ) − f ( t i ) ) 2 , QV(f; [a,b]) = \sup_{k\geq \phi} \sup_t \sum_{i=0}^k (f(t_{i+1}) - f(t_i))^2,
Q V ( f ; [ a , b ]) = k ≥ ϕ sup t sup i = 0 ∑ k ( f ( t i + 1 ) − f ( t i ) ) 2 ,
where the second sup \sup sup ranging over t t t is for a = t 0 < t 1 < . . . < t n = b . a = t_0 < t_1 < ... < t_n = b. a = t 0 < t 1 < ... < t n = b .
For B t B_t B t Brownian motion,
T V ( { B t } [ a , b ] ; [ a , b ] ) = ∞ a.s. for any a < b TV(\{B_t\}_{[a,b]} ; [a,b]) = \infty \text{ a.s. for any } a<b
T V ({ B t } [ a , b ] ; [ a , b ]) = ∞ a.s. for any a < b
and
Q V ( { B t } [ a , b ] ; [ a , b ] ) = b − a in probability and L 2 . QV(\{B_t\}_{[a,b]} ; [a,b]) = b-a \text{ in probability and } \mathcal{L}^2.
Q V ({ B t } [ a , b ] ; [ a , b ]) = b − a in probability and L 2 .
(pf here).
Corollary : Along any sequence of partitions { π n } ∈ ∏ \{\pi_n\} \in \prod { π n } ∈ ∏ s.t. ∑ ∣ π n ∣ < ∞ , \sum | \pi_n | < \infty, ∑ ∣ π n ∣ < ∞ , we have Q V ( { B } ; [ a , b ] ) = b − a QV(\{B\}; [a,b]) = b-a Q V ({ B } ; [ a , b ]) = b − a a.s.
Why is the infinite total variation T V ( B ) = ∞ TV(B) = \infty T V ( B ) = ∞ a problem?
Suppose we’d like to compute
∫ 0 t f ( s ) d B s , \int_0^t f(s) dB_s,
∫ 0 t f ( s ) d B s ,
the so-called Wiener integral. B s ( w ) B_s(w) B s ( w ) is almost surely continuous, but we can’t treat this as a Riemann-Stieltjes integral.
Assumption is usually monotonicity or bounded variation for the integrator
Consider a nonrandom function f f f continuous and g g g to be characterized as follows:
∫ 0 t f ( s ) d g ( s ) = lim ∏ n ∑ t i ∈ ∏ n f ( s i ) ( g ( t i + 1 ) − g ( t i ) ) \int_0^t f(s) dg(s) = \lim_{\prod_n} \sum_{t_i \in \prod_n} f(s_i) (g(t_{i+1}) - g(t_i))
∫ 0 t f ( s ) d g ( s ) = ∏ n lim t i ∈ ∏ n ∑ f ( s i ) ( g ( t i + 1 ) − g ( t i ))
for each s i ∈ [ t i , t i + 1 ] s_i \in [t_i, t_{i+1}] s i ∈ [ t i , t i + 1 ] and taking the limit of finer meshes ∣ ∏ n ∣ → 0 |\prod_n| \rightarrow 0 ∣ ∏ n ∣ → 0 . The limit should exist independently of our choice of partition and choice of s i s_i s i ’s.
When does the limit exist?
Let ∏ m \prod_m ∏ m be a coarser partition than ∏ n \prod_n ∏ n . Then
Such that ∏ n \prod_n ∏ n a refinements of ∏ m \prod_m ∏ m , so they will share endpoints. This still proves independence of partitions because
∑ t i ∈ ∏ n f ( s i ) ( g ( t i + 1 ) − g ( t i ) ) − ∑ t ~ j ∈ ∏ m f ( s ~ j ) ( g ( t ~ j + 1 ) − g ( t ~ j ) ) = ∑ t i ∈ ∏ n ( f ( s i ) − f ( s ~ i ∗ ) ) ( g ( t i + 1 ) − g ( t i ) ) , \begin{align}
\sum_{t_i \in \prod_n} f(s_i) (g(t_{i+1}) - g(t_i)) - \sum_{\tilde t_j \in \prod_m} f(\tilde s_j)(g(\tilde t_{j+1}) - g(\tilde t_j)) \\
= \sum_{t_i \in \prod_n} (f(s_i) - f(\tilde s_i^*))(g(t_{i+1}) - g(t_i)),
\end{align}
t i ∈ ∏ n ∑ f ( s i ) ( g ( t i + 1 ) − g ( t i )) − t ~ j ∈ ∏ m ∑ f ( s ~ j ) ( g ( t ~ j + 1 ) − g ( t ~ j )) = t i ∈ ∏ n ∑ ( f ( s i ) − f ( s ~ i ∗ )) ( g ( t i + 1 ) − g ( t i )) ,
with s ~ i ∗ \tilde s^*_i s ~ i ∗ is chosen the obvious way.
Since each interval in the refinement falls in exactly one coarse interval, it’s the relevant s ~ j \tilde s_j s ~ j from above
⟹ ( 2 ) ≤ ∑ ∣ f ( s i ) − f ( s ~ i ∗ ) ∣ ∣ g ( t i + 1 ) − g ( t i ) ∣ ≤ T V ( g ) ∗ max i ∣ f ( s i ) − f ( s ~ i ∗ ) ∣ . \begin{align*}
\implies (2) &\leq \sum |f(s_i) - f(\tilde s^*_i) | |g(t_{i+1}) - g(t_i) | \\
&\leq TV(g) * \max_i |f(s_i) - f(\tilde s^*_i)|.
\end{align*}
⟹ ( 2 ) ≤ ∑ ∣ f ( s i ) − f ( s ~ i ∗ ) ∣∣ g ( t i + 1 ) − g ( t i ) ∣ ≤ T V ( g ) ∗ i max ∣ f ( s i ) − f ( s ~ i ∗ ) ∣.
If f f f is continuous and T V ( g ) < ∞ , TV(g) < \infty, T V ( g ) < ∞ , then the sequence of sums is Cauchy.
i.e., we can squeeze this upper bound arbitrarily small.
Then the limit would exist and does not depend on choice of partition.
Contrapositive : if the Riemann Stieltjes integral exists for all continuous f f f , then T V ( g ) < ∞ . TV(g) < \infty. T V ( g ) < ∞.
Pf:…
Lemma : Assume T V ( g ; [ a , b ] ) < ∞ , ∣ ∣ f n − f ∣ ∣ ∞ → 0 , TV(g; [a,b]) < \infty, ||f_n - f||_\infty \rightarrow 0, T V ( g ; [ a , b ]) < ∞ , ∣∣ f n − f ∣ ∣ ∞ → 0 , and f n f_n f n are simple. Then lim n ∫ 0 t f n d g \lim_{n} \int_0^t f_n dg lim n ∫ 0 t f n d g exists independently of choice of the approximating sequence.
Pf:
Denote lim n ∫ 0 t f n d g \lim_{n} \int_0^t f_n dg lim n ∫ 0 t f n d g as I ( f n ) I(f_n) I ( f n ) .
I ( f n ) − I ( f m ) = ∑ i ( f n ( t i ) − f m ( t i ) ) ( g ( t i + 1 ) − g ( t i ) ) I(f_n) - I(f_m) = \sum_i (f_n(t_i) - f_m(t_i))(g(t_{i+1}) - g(t_i))
I ( f n ) − I ( f m ) = i ∑ ( f n ( t i ) − f m ( t i )) ( g ( t i + 1 ) − g ( t i ))
for some common refinement of t t t ’s. Hence ∣ I ( f n ) − I ( f m ) ∣ ≤ ∣ ∣ f n − f m ∣ ∣ T V ( g ) . |I(f_n) - I(f_m)| \leq ||f_n - f_m|| TV(g). ∣ I ( f n ) − I ( f m ) ∣ ≤ ∣∣ f n − f m ∣∣ T V ( g ) . Since
∣ ∣ f n − f m ∣ ∣ ≤ ∣ ∣ f n − f ∣ ∣ + ∣ ∣ f − f m ∣ ∣ → 0 , ||f_n - f_m|| \leq ||f_n - f|| + ||f - f_m|| \rightarrow 0,
∣∣ f n − f m ∣∣ ≤ ∣∣ f n − f ∣∣ + ∣∣ f − f m ∣∣ → 0 ,
we have I ( f n ) I(f_n) I ( f n ) Cauchy sequence and the limit exists.
Let ( h n ) (h_n) ( h n ) be another sequence of simple functions such that ∣ ∣ h n − f ∣ ∣ → 0 ||h_n -f|| \rightarrow 0 ∣∣ h n − f ∣∣ → 0 . Note
∣ ∣ h n − f m ∣ ∣ ≤ ∣ ∣ h n − f ∣ ∣ + ∣ ∣ f − f m ∣ ∣ → 0 ||h_n - f_m|| \leq ||h_n - f|| + ||f - f_m|| \rightarrow 0
∣∣ h n − f m ∣∣ ≤ ∣∣ h n − f ∣∣ + ∣∣ f − f m ∣∣ → 0
as both n , m n,m n , m approach ∞ . \infty. ∞. For a common refinement,
I ( h n ) − I ( f m ) = ∑ i ( h n ( t i ) − f m ( t i ) ) ( g ( t i + 1 ) − g ( t i ) ) , I(h_n) - I(f_m) = \sum_i (h_n(t_i) - f_m(t_i))(g(t_{i+1}) - g(t_i)),
I ( h n ) − I ( f m ) = i ∑ ( h n ( t i ) − f m ( t i )) ( g ( t i + 1 ) − g ( t i )) ,
which is again Cauchy. Therefore, the integrals must approach the same limit, regardless of approximating sequence. ■ \blacksquare ■
What if T V ( g ; [ 0 , 1 ] ) = ∞ TV(g; [0,1]) = \infty T V ( g ; [ 0 , 1 ]) = ∞ ? Then there exists simple functions ∣ ∣ f n − f ∣ ∣ ∞ → 0 ||f_n - f||_\infty \rightarrow 0 ∣∣ f n − f ∣ ∣ ∞ → 0 such that I ( f n ) ↑ ∞ . I(f_n) \uparrow \infty. I ( f n ) ↑ ∞.
Pf:
WLOG assume f = 0 f=0 f = 0 .
In the other cases, if we had two sequences of simple approximating functions for f f f , where ∣ ∣ f n − f ∣ ∣ ∞ → 0 ||f_n - f||_\infty \rightarrow 0 ∣∣ f n − f ∣ ∣ ∞ → 0 such that I ( f n ) I(f_n) I ( f n ) converges and ∣ ∣ h n − 0 ∣ ∣ ∞ → 0 ||h_n - 0||_\infty \rightarrow 0 ∣∣ h n − 0∣ ∣ ∞ → 0 such that I ( h n ) ↑ ∞ I(h_n) \uparrow \infty I ( h n ) ↑ ∞ , then f n + h n → f f_n + h_n \rightarrow f f n + h n → f uniformly but I ( f n + h n ) ↑ ∞ I(f_n + h_n) \uparrow \infty I ( f n + h n ) ↑ ∞ .
Let T V ( g ) = ∞ TV(g) = \infty T V ( g ) = ∞ . Then there exists a sequence of partitions ( ∏ n ) (\prod_n) ( ∏ n ) such that
∑ t i ∈ ∏ n ∣ g ( t i + 1 ) − g ( t i ) ∣ → ∞ . \sum_{t_i \in \prod_n} |g(t_{i+1}) - g(t_i)| \rightarrow \infty.
t i ∈ ∏ n ∑ ∣ g ( t i + 1 ) − g ( t i ) ∣ → ∞.
Define h n ( t i ) = sgn ( g ( t i + 1 − g ( t i ) ) ) . h_n(t_i) = \text{sgn}(g(t_{i+1} - g(t_i))). h n ( t i ) = sgn ( g ( t i + 1 − g ( t i ))) . Then I ( h n ) ↑ ∞ I(h_n) \uparrow \infty I ( h n ) ↑ ∞ but h n h_n h n does not converge to 0 0 0 uniformly.
Let f n = h n I ( h n ) . f_n = \frac{h_n}{\sqrt{I(h_n)}}. f n = I ( h n ) h n . Then I ( f n ) = I ( h n ) ↑ ∞ I(f_n) = \sqrt{I(h_n)} \uparrow \infty I ( f n ) = I ( h n ) ↑ ∞ and sup t ∣ f n ( t ) − 0 ∣ = 1 I ( h n ) → 0 \sup_t |f_n(t) - 0 | = \frac{1}{\sqrt{I(h_n)}} \rightarrow 0 sup t ∣ f n ( t ) − 0∣ = I ( h n ) 1 → 0 .
When T V ( g ) = ∞ TV(g) = \infty T V ( g ) = ∞ the Riemann-Stieltjes limit depends on choice of approximating sequence. ■ \blacksquare ■
Integrating w.r.t. Brownian Motion
Let’s try to make sense of the integral
∫ 0 1 f ( t , w ) d B t ( w ) \int_0^1 f(t,w) dB_t(w)
∫ 0 1 f ( t , w ) d B t ( w )
where ( B t ) (B_t) ( B t ) is Brownian motion and f f f is simple:
f n ( t , w ) = ∑ j c j ( w ) 1 [ j / 2 n , ( j + 1 ) / 2 n ] ( t ) . f_n(t,w) = \sum_j c_j(w) \mathbb{1}_{[j/2^n, (j+1)/2^n]}^{(t)}.
f n ( t , w ) = j ∑ c j ( w ) 1 [ j / 2 n , ( j + 1 ) / 2 n ] ( t ) .
Note this means f n f_n f n is random piecewise constant. Then we have
∫ 0 1 f n ( t , w ) d B t ( w ) = ∑ c j ( w ) ( B ( ( j + 1 ) / 2 n ) ( w ) − B j / 2 n ( w ) ) . \int_0^1 f_n(t,w) dB_t(w) = \sum c_j(w) (B_{((j+1)/2^n)}(w) - B_{j / 2^n}(w)).
∫ 0 1 f n ( t , w ) d B t ( w ) = ∑ c j ( w ) ( B (( j + 1 ) / 2 n ) ( w ) − B j / 2 n ( w )) .
Ultimately, if we’d want to integrate Brownian motion, we’d consider 2 cases:
c j ( w ) = B j / 2 n ( w ) c_j(w) = B_{j / 2^n}(w) c j ( w ) = B j / 2 n ( w ) , scenario a
c j ( w ) = B ( j + 1 ) / 2 n ( w ) c_j(w) = B_{(j+1)/2^n}(w) c j ( w ) = B ( j + 1 ) / 2 n ( w ) , scenario b
We can think of these as choices to evaluate f f f within the interval (e.g., choosing sides of the rectangle for left/right/midpoint Riemann integral).
Note that
E [ ∫ 0 1 f n ( t , w ) d B t ( w ) ] \E[\int_0^1 f_n(t,w) dB_t(w)]
E [ ∫ 0 1 f n ( t , w ) d B t ( w )]
is either 0 0 0 (scenario a) or 1 1 1 (scenario b). Both seem like good approximations to f ( t , w ) = B t ( w ) , f(t,w) = B_t(w), f ( t , w ) = B t ( w ) , but have different integrals!
Generally:
∑ f ( t i ∗ , w ) 1 [ t 0 , t i + 1 ] \sum f(t_i^*, w) \mathbb{1}_{[t_0, t_{i+1}]}
∑ f ( t i ∗ , w ) 1 [ t 0 , t i + 1 ]